Merit functions and error bounds for generalized variational inequalities
نویسنده
چکیده
We consider the generalized variational inequality and construct certain merit functions associated with this problem. In particular, those merit functions are everywhere nonnegative and their zero-sets are precisely solutions of the variational inequality. We further use those functions to obtain error bounds, i.e., upper estimates for the distance to solutions of the problem. 2003 Elsevier Inc. All rights reserved.
منابع مشابه
Vector Optimization Problems and Generalized Vector Variational-Like Inequalities
In this paper, some properties of pseudoinvex functions, defined by means of limiting subdifferential, are discussed. Furthermore, the Minty vector variational-like inequality, the Stampacchia vector variational-like inequality, and the weak formulations of these two inequalities defined by means of limiting subdifferential are studied. Moreover, some relationships between the vector vari...
متن کاملScalar gap functions and error bounds for generalized mixed vector equilibrium problems with applications
It is well known that equilibrium problems are very important mathematical models and are closely related with fixed point problems, variational inequalities, and Nash equilibrium problems. Gap functions and error bounds which play a vital role in algorithms design, are two much-addressed topics of vector equilibrium problems. This paper is devoted to studying the scalar-valued gap functions an...
متن کاملError bounds for proximal point subproblems and associated inexact proximal point algorithms
We study various error measures for approximate solution of proximal point regularizations of the variational inequality problem, and of the closely related problem of finding a zero of a maximal monotone operator. A new merit function is proposed for proximal point subproblems associated with the latter. This merit function is based on Burachik-Iusem-Svaiter’s concept of ε-enlargement of a max...
متن کاملPseudoconvex Multiobjective Continuous-time Problems and Vector Variational Inequalities
In this paper, the concept of pseudoconvexity and quasiconvexity for continuous~-time functions are studied and an equivalence condition for pseudoconvexity is obtained. Moreover, under pseudoconvexity assumptions, some relationships between Minty and Stampacchia vector variational inequalities and continuous-time programming problems are presented. Finally, some characterizations of the soluti...
متن کاملGap Functions and Global Error Bounds for Set-valued Mixed Variational Inequalities
In this paper, we introduce some gap functions for set-valued mixed variational inequalities under suitable conditions. We further use these gap functions to study global error bounds for the solutions of set-valued mixed variational inequalities in Hilbert spaces. The results presented in this paper generalize and improve some corresponding known results in literatures.
متن کامل